標題:
此文章來自奇摩知識+如有不便請留言告知
公式主項的變換,救命丫.好吾明>
發問:
PS: /<.. ..>
最佳解答:
提醒你 : 做方程式要用天秤的原理, 左邊和右邊要永遠相同. 另, 盡量將主項移到左邊, 其他項則移到右邊. 1) 1/a - 1/b = 1/c [b] _____- 1/b = 1/c - 1/a (左右同時減以 1/a) ______1/b = - 1/c + 1/a (左右同時乘以 -1) _________= (c - a)/ac (右邊通分母) _______b = ac/(c - a) (左右同時被 1 除) 2) F = (g - 1)/g [g] __Fg = g - 1 (左右同時乘以 g) Fg - g = -1 (左右同時減以 g) g(F - 1) = -1 (左邊抽公因數 g) ____g = -1/(F - 1) (左右同時除以 (F - 1)) _____= 1/(1 - F) (右邊上下同時乘以 -1) 3) 1/y = (1/x) + c [x] 1/y - 1/x = c (左右同時減以 1/x) ___-1/x = c - 1/y (左右同時減以 1/y) ______= (cy - 1)/y (右邊通分母) ____1/x = (1 - cy)/y (左右同時乘以 -1) _____x = y/(1 - cy) (左右同時被 1 除) 4) (a - b)x - (a + b)y = 0 [a] ___ax - bx - ay - by = 0 (展開左邊) __a(x - y) - b(x + y) = 0 (左邊重組並抽公因數 a 和 b) _________a(x - y) = b(x + y) (左右同時加以 [b(x + y)]) ______________a = b(x + y)/(x - y) (左右同時除以 (x - y)) 5) y = (a + bx)/(c + dx) [x] y(c + dx) = a + bx (左右同時乘以 (c + dx)) yc + dxy = a + bx (展開左邊) yc + dxy - bx = a (左右同時減以 bx) dxy - bx = a - yc (左右同時減以 yc) x(dy - b) = a - yc (左邊抽公因數 x) ______x = (a - yc)/(dy - b) (左右同時除以 (dy - b)) 6) t = n / [2(T-10)H] [T] t(T - 10) = n / (2H) (左右同時乘以 (T - 10)) __T - 10 = n / (2Ht) (左右同時除以 t) _____T = [n / (2Ht)] + 10 (左右同時加以 10) 7) X = (1-y)/(1+y) [y] X(1 + y) = 1 - y (左右同時乘以 (1 + y)) X + Xy = 1 - y (展開左邊) X + Xy + y = 1 (左右同時加以 y) Xy + y = 1 - X (左右同時減以 X) y(X + 1) = 1 - X (左邊抽公因數 y) ____y = (1 - X)/(X + 1) (左右同時除以 (X + 1)) 希望這樣可以幫到你溫習.
其他解答:
Q1) 1/a - 1/b = 1/c [b] 1/a - 1/c = 1/b (c-a) / ac = 1/b b( c-a ) = ac b = ac / (c-a) Q2) F = (g-1) /g [g] F = g/g - 1/g F = 1 - 1/g 1/g = 1 - F 1 = g( 1-F ) g = 1 / ( 1-F ) Q3) 1/y = (1/x) + c [x] 1/y - c = 1/x 1/y - cy/y = 1/x ( 1-cy ) / y = 1/x x( 1-cy ) = y x = y / ( 1-cy ) Q4) (a-b)x - (a+b)y = 0 [a] ax - bx - ay - by = 0 a(x-y) - b(x+y) = 0 a(x-y) = b(x+y) a = b(x+y) / (x-y) Q5) y = (a+bx) / (c+dx) [x] y(c+dx) = a + bx yc + ydx = a + bx ydx - bx = a - yc x( yd-b ) = a - yc x = (a-yc) / (yd-b) Q6) t = n / 2(T-10)H [T] (T-10)t = n / 2H (T-10) = n / 2Ht T = 10 + ( n / 2Ht ) Q7) X = (1-y)/(1+y) [y] X(1+y) = 1 - y X + Xy = 1 - y Xy + y = 1 - X y(X + 1) = 1-X y = (1-X)/(1+X)